For problem 1, graph the absolute value function and identify the following features.

1.
$$y = |x - 2| + 6$$

Opens UP/DOWN (Circle one)

Vertex: (2,6)

Axis of symmetry: $\chi = 2$

Domain: _____R

Range: V 7, 0

x	y	5
0	8	
g postorio (n. g	7	ے ا
2	6	C
3	7	
4	8	-5

Solve the following equation graphically and algebraically.

2.
$$|x + 5| = 12$$

 $|x + 5| = 12 = 0$

Graphical Solutions

Algebraic Solutions

|X+5|=12 |X+5|=12|X+5|=12

Solution(s): X = 7, X = -1

Problems 3 and 4, solve algebraically.

4.
$$-|x-8| = -4$$

 $|x-8| = 4$
 $\times -8 = 4$
 $+8 + 8$
 $\times = 12$
 $-|x-8| = -14| = -4$
Solution(s): $x = 12, x = 4$

Problems 5-8: Solve by using Square Roots. You must show your work to receive full credit

$$5. x^{2} - 4 = 32$$

$$44 + 4$$

$$1 \times 1 = 6$$

6.
$$(x + 2)^2 - 2 = 6$$

 $+2 + 2$
 $\sqrt{(x+2)^2} = \sqrt{8}$
 $|x+2| = 2\sqrt{2}$
 $\times +2 = 2\sqrt{2}$

Solution(s): $\chi = \frac{1}{6}$

Solution(s):
$$\chi = -2 \pm 2\sqrt{2}$$

7.
$$3x^{2} + 5 = -13$$

$$-5 - 5$$

$$3x^{2} - 18$$

$$3$$

$$\sqrt{x^{2}} - \sqrt{-6} = \sqrt{-6}$$

$$|X| = 0.6$$

8.
$$3(x-6)^2 - 4 = -13$$

+++

3(x-6)^2 = -9

3

 $\sqrt{(x-6)^2} = -3$
 \sqrt

Solution(s): $\chi = \pm i\sqrt{6}$

Pick ONE equation for EACH method. You cannot use the same equation twice. Solve the equation for x.

 $9. x^2 + 6x - 16 = 0$ $10.4x^2 + 20x + 25 = 0$ $11. (x - 9)^2 = 4$ $12. x^2 + 2x + 15 = 0$

disc: = 56

disc: 100 disc: 0

(x-2)(x+8)=0 Factors of 16 (x-2)(x+8)=0 -1,16 (x-2)=0 x+8=0 -4,4 (x-2)=0 x+8=0 -4,4

Solution(s): $\times = -2.5$

Graphing

Solution(s): $\times = 2 \times = 8$

#12 a=1 b=2 c=15X= -(2) ± 556 = 17.14.14

= -2 ± 20119

三十七以好

#______

Square Roots

1x - 91 = 2

x - 9 = 2 x - 9 = -2

Solution(s): X = 1 土 い 「4

Solution(s): $\chi = 11$, $\chi = 7$

Pick ONE equation for EACH method. You cannot use the same equation twice. Solve the equation for x.

 $13. x^{2} + 16x - 9 = 0 14. 2x^{2} + 30x = 0$ $3. x^{2} + 16x - 9 = 0 14. 2x^{2} + 30x = 0$ Graphing

 $15.\frac{1}{3}(x+2)^2 = 5 16.x^2 + x - 6 = 0$

	'	١				
#_10		* *	F . ' in the	n da da d		a 4
x y			71			
-3 6				.		
2 14		/ \-			/	
				9 /		
-07-6.00	+7 4 5	- ब - वै -	1 -1	1	1 4 5	1 7 '
0 -6						
the land				· s / -		
70				7		
				4		
				7		
		-		web.		

Factoring

2x (x+15)=0

Solution(s): $\chi = -3$, $\chi = 2$

Solution(s): $\times = 0 \times = -6$

#13

$$x = -\frac{16}{160} \pm \sqrt{292} = \sqrt{4.53}$$

$$= -\frac{16}{200} \pm 2\sqrt{73}$$

$$= -8 \pm \sqrt{73}$$

#15

Square Roots

1x+21 = 1/15 x+2=1/15 x+2=-1/15 x+2=-1/15 x=-2-1/15

Solution(s): $\chi = -2 \pm \sqrt{5}$

Solution(s): $\chi = -8 \pm \sqrt{3}$

17. An apple drops from the top of a tree that is 32 feet tall. The falling object is modeled by, $h(t) = -16t^2 + s$, where h(t) represents the height of the pole after t seconds, and s is the height of the tree. After how many seconds does the opple hit the ground? Use any method to solve. Round your answer to nearest tenth of a second.

Square roots $\frac{46t^{2}+32=6}{-32-32}$ $-16t^{2}=-32$ -16 16

Solution(s): += √2 ≈ 1.4 seconds

() ! !